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Abstract

Gas-particle and other dispersed-phase flows can be described by a kinetic equation containing terms for spatial trans-
port, acceleration, and particle processes (such as evaporation or collisions). In principle, the kinetic description is valid
from the dilute (non-collisional) to the dense limit. However, its numerical solution in multi-dimensional systems is intrac-
table due to the large number of independent variables. As an alternative, Lagrangian methods ‘‘discretize” the density
function into ‘‘parcels” that are simulated using Monte-Carlo methods. While quite accurate, as in any statistical
approach, Lagrangian methods require a relatively large number of parcels to control statistical noise, and thus are com-
putationally expensive. A less costly alternative is to solve Eulerian transport equations for selected moments of the kinetic
equation. However, it is well known that in the dilute limit Eulerian methods have great difficulty to describe correctly the
moments as predicted by a Lagrangian method. Here a two-node quadrature-based Eulerian moment closure is developed
and tested for the kinetic equation. It is shown that the method can successfully handle highly non-equilibrium flows (e.g.
impinging particle jets, jet crossing, particle rebound off walls, finite Stokes number flows) that heretofore could not be
treated accurately with the Eulerian approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The direct quadrature method of moments (DQMOM) is an efficient Eulerian formulation for describing
polydisperse multiphase flows [20]. It is especially useful for treating dense sprays undergoing coalescence, and
for submicron particulate/aerosol systems subject to Brownian aggregation [27,22]. In comparison, standard
moment methods have great difficulty treating systems with aggregation/coalescence and breakage. For other
processes (e.g. evaporation, drag) the DQMOM equations are equivalent to the widely used Lagrangian
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particle method for sprays [6]. However, even when used in this context, DQMOM has the inherent advantage
over Lagrangian methods of precisely controlling the statistical noise in the lower-order moments (e.g. droplet
number density, mass density, Sauter radius). For a given desired accuracy, this greatly reduces the compu-
tational cost since a large number of numerical particles is not required to eliminate statistical noise [4].

In previous work, the advantages of using DQMOM for treating particle populations with low Stokes num-
bers (i.e., the dispersed-phase velocity follows closely the velocity of the continuous phase) have been clearly
demonstrated [21,22,35,38]. These models have been implemented in flow codes for treating the formation of
nanoparticles (e.g. soot) in flames, colloidal aggregation in liquids, and aerosols in the atmosphere. For these
applications, the DQMOM transport equations take the form of standard scalar transport equations and are
thus easily added to existing flow codes. The treatment of a dispersed-phase with finite Stokes number intro-
duces the additional complication of accounting for the dispersed-phase velocity (and its dependence on par-
ticle size). In the Lagrangian formulation, this is done by solving for the particle velocity as it traverses the
(Eulerian) gas phase. In quadrature methods, it is done by solving an Eulerian model where each quadrature
node has it own velocity field.

In order to test the validity of the quadrature methods for sprays, the laminar nozzle-flow problem
described in [18] has been recently investigated [14] using both DQMOM and Lagrangian particle tracking.
This problem is particularly challenging due to the significant coalescence rates caused by droplets of different
sizes having very different Stokes numbers (and hence different velocities). Nevertheless, the comparison
between the two methods showed excellent agreement between quantities such as the droplet number density,
mass density and Sauter radius. The computational cost for DQMOM was however two orders of magnitude
lower than the Lagrangian method. This result is very promising and motivates our interest in developing the
model further. The previous work on quadrature methods has identified two important points requiring fur-
ther study [14]: (i) the treatment of non-linear evaporation, and (ii) the treatment of velocity dispersion in the
context of moment closures. The second point is the topic investigated in this work.

As an example, consider a laminar spray. The Williams equation [36] for the joint volume (v), velocity ðvÞ
number density function f ðt; x; v; vÞ is
1 Co
otf þ v � oxf þ ovðRvf Þ þ ov � f
F

mp

� �
¼ Q; ð1Þ
where Rv is the evaporation rate, F is the drag force acting on a droplet, mp is the droplet mass, and Q is the
collisions/coalescence term.1 Note that the number density function has four degrees of freedom (one for v and
three for v ¼ ½v1; v2; v3�T), and it is intractable to solve directly for realistic fluid-particle flows using an Eulerian
sectional method that discretizes v–v phase space [1]. In most application codes (1) is approximated using a
Lagrangian method [6,4]. Although straightforward to implement numerically, this method does require a rel-
atively large number of ‘‘parcels” to represent the spray in order to control statistical noise and bias. Note that
extending f to include other variables (e.g. droplet temperature, chemical composition, etc.) is straightforward
if the appropriate rate expressions are added to (1).

Classical moment closures for (1) start by defining the moments of f:
vkvl
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where the usual practice is to consider only non-negative integers for k–p. Applying the moment transforma-
tion to (1) leads to a transport equation for the moments:
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where P denotes the terms for evaporation, drag, and coalescence. In general, only the first term in Eq. (3) is
closed. The second term describes spatial transport and contains moments one order higher in velocity:
llisions leave the particle volumes unchanged, but modify the velocities. Coalescence implies a change in particle volumes.



Fig. 1. Particle velocity variance found from a Lagrangian simulation in isotropic turbulence with finite Stokes number. Arrows indicate
the direction of the most compressive strain rate of the fluid velocity. Regions of high variance are generated where the particles are unable
to decelerate as quickly as the fluid, leading to particle-crossing trajectories.
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and it is never closed. In contrast, the term on the right-hand side of (3) will be closed at best only when the
rate expressions for evaporation, drag, and coalescence are linear in v and v.

The closure of the right-hand side of (3) using quadrature methods is investigated in detail elsewhere [14],
and so our primary focus here will be on closures for the spatial transport term. We are particularly interested
in the performance of quadrature methods for non-equilibrium flows wherein the velocity density function is
far from Maxwellian. For example, dilute systems often exhibit non-equilibrium behavior because particle col-
lisions are too weak to overcome kinetic effects. In many cases the velocity density function can be non-uni-
modal, implying that there is a high probability of finding particles with distinctly different velocities at the
same location. In Lagrangian simulations of dilute systems, such behavior can be easily captured and is known
as particle-trajectory crossing (PTC). In general, PTC does not occur at zero Stokes number because the fluid
velocity is mono-kinetic [24]. However, beyond a critical Stokes number the particles are no longer able to
follow the fluid and PTC can occur. Fig. 1 illustrates this phenomenon for finite Stokes number particles in
isotropic turbulence. As discussed in detail below, ‘‘standard” moment closures are unable to correctly
describe particle clustering (as measured by the particle number density np) because they do not account cor-
rectly for PTC. Thus, the only available method for simulating accurately dilute gas-particle systems is
Lagrangian particle tracking. As mentioned earlier, such statistical methods are not well suited for computing
Eulerian statistics due to statistical noise. For example, the accurate prediction of npðt; xÞ (e.g. sufficiently
accurate to compute its energy spectrum in a homogeneous flow) requires tens of millions of Lagrangian par-
ticles and hence very long computing times [15]. In contrast, an accurate Eulerian description of npðt; xÞ would
require a fraction of the computing cost (e.g. comparable to the cost of solving for the fluid velocity.) Such an
Eulerian description has not been previously reported and is the goal of the work described here.

2. Moment closures for fluid-particle flows

2.1. Basic principles and state of the art

For the sake of simplicity, we shall restrict our attention to the case of monodisperse particles without ther-
mal and mass exchange with the fluid phase. Moreover, complex phenomena such as particle collisions,
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secondary atomization or turbulent dispersion will not be considered hereinafter. We shall focus only on the
basic ideas of moment methods, especially on the closure problem, which is at the core of our quadrature-
based method for Eulerian gas-particle modeling. Finally, we note that although we focus on gas–solid flows,
the basic fundamental problems associated with moment closures (or two-fluid models in general) arise in
many other applications (e.g. bubble-laden flow [11,12]).

The starting point to derive moment models is the Williams equation, which governs the particle evolution
at the kinetic level in a d-dimensional physical space with particle velocity v and position x. All the relevant
physics can in theory be included in this equation. In the very simple case of a non-evaporating ðRv ¼ 0Þ,
monodisperse particulate phase (with no collisions, secondary atomization, nor turbulent dispersion), this
equation reads
of
ot
þrx � ðf vÞ þ rv � f

F

mp

� �
¼ 0 ð5Þ
with f ðt; x; vÞ being the particle number density function in the phase space E ¼ Rd � Rd , mp the mass of a
particle, and F the force acting on a particle. If one assumes that the particle density is much greater than
the fluid density (e.g. solid or liquid particles suspended in a gas), the expression for F is quite simple and cor-
responds (in an inertial frame) to the sum of the drag force and the gravity force (which is very often negli-
gible). Hence one has
FðUf ; vÞ ¼
1

2
pr2qf CdjUf � vjðUf � vÞ þ mpg;
where Uf is the fluid velocity, r is the particle radius, qf the fluid density, and Cd is the particle drag coefficient
given by the following correlation due to Schiller and Nauman [33]:
Cd ¼
24
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1þ 1

6
Re2=3

p

� �
;

with Rep ¼ 2jUf � vjr=mf being the particle Reynolds number where mf is the fluid kinematic viscosity.
Let us now introduce the velocity moments up to fourth order:
M0ðt; xÞ ¼
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with dv ¼ dv1 . . . dvd . Starting from (5) a straightforward calculation yields the following set of equations:
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ð6Þ
where we have used the Einstein convention of implicit summation on repeated indices. It is clear that this
system is not closed because of the drag terms on the right-hand side (rhs) and the presence of moments of
order nþ 1 on the left-hand side (lhs) of the equation corresponding to the moment of order n. The most rig-
orous way to close the system is to make an assumption on the shape of the number density function. The
simplest one (valid only for very small Stokes numbers) reads [17]:
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f ðt; x; vÞ ¼ npðt; xÞdv�Upðt;xÞ; ð7Þ
np being the number of particles per unit volume and Up the mean particle velocity. For this choice, f is fully
determined by its first 1þ d moments according to the following relations:
M0ðt; xÞ ¼ npðt; xÞ; M1
i ðt; xÞ ¼ npðt; xÞUpiðt; xÞ: ð8Þ
Thus, only 1þ d equations are needed to obtain a closed model.
Inserting relations (8) into the first 1þ d equations of system (6), one obtains the following system:
onp

ot
þ onpUpj

oxj
¼ 0;

onpUpi

ot
þ onpU piU pj

oxj
¼ npgi þ

np

mp

F iðUf ;UpÞ:
ð9Þ
This set of equations – or its variants in the case of polydisperse, evaporating particles [18,9], or the Eulerian
two-fluid approach used for bubble-laden flows [11,12] – is a commonly used Eulerian model for small Stokes
number gas-particle flows. However, it suffers from a major drawback: by construction (see 7), it is not able to
take into account the presence of particles with different velocities located at the same point. This can lead to
unphysical results in the case of two crossing jets of particles (e.g. at Stokes only slightly greater than zero) or
in the case of a jet of particles impinging on a wall. This limitation also leads to an overestimation of the pref-
erential concentration of particles in low vorticity regions of turbulent flows. These problems are closely re-
lated to the ill-posedness of system (9) in the space of functions even only locally integrable. Actually, it
has been proven [3] that for a very wide class of initial conditions, the solution of the pressure-less gas dynam-
ics system, which corresponds to the lhs of system (9), is singular in the sense that Up is a discontinuous func-
tion and np is a measure-valued distribution with its singular part concentrated on the discontinuities of the
velocity field. In numerical applications, this means that np may become locally infinite, which in turn can re-
sult in numerical stiffness problems. Similar difficulties arise with the two-fluid model for bubble-laden flows
[12]. The net result is that all multiphase models based on only two Eulerian moments (i.e., np and Up) are
bound to fail at reproducing Lagrangian statistics in non-equilibrium flows.

Another well-known problem with system (9) is that it is not able to reproduce the spreading of particles by
turbulence, even if it is coupled to a turbulence model for the fluid. This problem can be partially solved by
replacing the closure hypothesis (7) by a Gaussian-shape assumption (see e.g. [32] for related work):
f ðt; x; vÞ ¼ npðt; xÞ
ð2prpðt; xÞÞd=2

exp
jv�Upðt; xÞj2

2rpðt; xÞ2

 !
; ð10Þ
where rp is particle velocity standard deviation, and by introducing additional diffusion terms in the governing
kinetic equation (see for example the work of Reeks [30] or Zaichik [37]). The simplest such model reads
of
ot
þrx � ðf vÞ þ rv � f
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� �
�rv � ðDrvf Þ ¼ 0; ð11Þ
where D is a positive coefficient depending upon the properties of the fluid turbulence (turbulent kinetic energy
and integral time scale). Taking the moments of (11) and using the closure relation (10), one obtains the fol-
lowing second-order Eulerian model for the particle dynamics:
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where Ep ¼ 1=2jUpj2 þ ðd=2Þr2
p denotes the total kinetic energy of the particulate phase per unit mass. This

system is very close to the compressible gas dynamics system, the term pp ¼ npr2
p playing the role of a granular

pressure. For strictly positive values of pp, this system is hyperbolic and its solution, even discontinuous, al-
ways belongs to a space of functions and never contains a singular-measure-valued part. Nevertheless, in
many applications, the pressure term remains weak compared to the inertial term (especially in the laminar
part of the flow), and the singular behavior of the pressure-less gas dynamics system is not fully eliminated
[15,24,4]. Moreover, because of closure assumption (10), this system is not adapted to reproduce strongly
non-equilibrium situations such as those already mentioned (jet crossing, jet-wall interaction) and leads in
those cases to non-physical solutions. For example, in the jet-crossing problem second-order closures such
as (12) will generate effective particle ‘‘collisions” even though such terms do not appear in (1). This is the prin-
cipal reason why we are motivated to seek a more general quadrature-based closure assumption, and to derive
the corresponding moment model.

2.2. Quadrature-based moment closures

The quadrature method of moments (QMOM) was introduced by McGraw [27] as an efficient, yet accurate
closure for univariate density functions f ðxÞ. The principal idea is related to Gaussian quadrature, and can be
expressed as
Z 1

0

gðxÞf ðxÞdx ¼
XN

a¼1

wagðxaÞ; ð13Þ
where gðxÞ is an arbitrary smooth function. The non-negative weights wa and abscissas xa are determined from
a system of non-linear equations:
hxki ¼
XN

a¼1

waxk
a; k 2 f0; 1; . . . ; 2N � 1g; ð14Þ
where the moments hxki are assumed to be known. This system can be solved accurately using the prod-
uct-difference (PD) algorithm described elsewhere [27]. The basic computational algorithm then consists of
solving transport equations for hxki ðk 2 f0; 1; . . . ; 2N � 1gÞ wherein all non-linear terms are closed using
(13). The QMOM algorithm has been shown to yield accurate results for problems involving univariate
density functions, including complex integro-differential expressions arising from aggregation and breakage
terms [22].

The extension of QMOM to multivariate problems is challenging because the PD algorithm cannot nor-
mally be used with more than one variable (this is related to the fact that there does not exist a Gaussian
quadrature theory for arbitrary multi-dimensional functions). However, it is sometimes possible to solve
the multi-variate version of (14) for a selected set of moments, and this is the procedure employed in this
work.

The direct quadrature method of moments (DQMOM) consists of reinterpreting (13) as a closure assump-
tion for (1) based on an expansion of the number density function in a sum of weighted delta functions in
phase space [13,20,14]:
f ðt; x; vÞ ¼
XN

a¼1

nadv�Ua ; ð15Þ
where dv�Ua � dv1�Ua1
dv2�Ua2

dv3�Ua3
. The approximation in (15) is similar to the Lagrangian method, excepted

that here the weights na and abscissas ðUa ¼ ½U a1;U a2;U a3�TÞ are fields. Thus we can interpret na to be the
weights of parcels (na has units of number of particles per unit volume), and Ua to be the corresponding veloc-
ity. Application of DQMOM to (1) results in transport equations for the number density and momentum den-
sity of each quadrature node [14]. In principal, these equations could be solved with appropriate initial and
boundary conditions to find the fields naðt; xÞ and Uaðt; xÞ appearing in (15). However, this procedure in itself
is not sufficient to avoid singularities of the type inherent in (9).
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The quadrature approximation for the moments of a multi-variate number density function are found
directly from (15):
vl
1vm

2 vp
3

� �
¼
XN

a¼1

naUl
a1U m

a2U p
a3: ð16Þ
The fundamental idea behind quadrature methods is that we should choose the weights and abscissas such
that as many moments as possible agree with moment transport equations found from the kinetic equation.
Note that there are a total of N weights and 3N abscissas. We will thus need to choose an equal number of
independent moments to determine the weights and abscissas. Note that in the limit of small Stokes numbers
Ua can be replaced by the continuous-phase velocity Uf . However, our primary interest in this work is the
behavior of quadrature methods for finite Stokes numbers where Ua is not equal to the continuous-phase
velocity.

2.3. A two-node quadrature-based moment closure

In this work we will consider the following two-node closure hypothesis [8]:
f ðt; x; vÞ ¼ n1ðt; xÞdv�U1ðt;xÞ þ n2ðt; xÞdv�U2ðt;xÞ: ð17Þ
This is a direct generalization of closure relation (7) that is motivated by DQMOM. This new distribution is
fully characterized by 2þ 2d degrees of freedom. It is thus natural to build a model corresponding to the con-
servation of 2þ 2d moments. For both simplicity and symmetry reasons, we have chosen to work with the
following set of moments:
M0 ¼ n1 þ n2; M1
i ¼ n1U 1i þ n2U 2i;

M2
ii ¼ n1U 2

1i þ n2U 2
2i; Q ¼

Xd

i¼1

M3
iii ¼

Xd
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n1U 3
1i þ n2U 3

2i

� �
:

ð18Þ
Inserting these expressions into system (6) and using (17), an easy calculation yields a system of 2ð1þ dÞ mo-
ment equations:
oM0
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þ oM1

i
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;

ð19Þ
with R, M2
ij and M3

iij given by the following expressions (resulting from their definitions and the closure
assumption on f):
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M2
ij ¼ n1U 1iU 1j þ n2U 2iU 2j; M3

iij ¼ n1U 2
1iU 1j þ n2U 2

2iU 2j;

Ri ¼ n1
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U 3
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 !
U 1i þ n2

Xd
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U 3
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 !
U 2i:
For system (19) to be closed (and well defined), it is necessary to prove that for any given admissible
state
W ¼ M0;M1
1; . . . ;M1

d ;M
2
11; . . . ;M2

dd ;Q
� �

2 R2þ2d ;
there exists one pair
V ¼ ½ðn1;U1Þ; ðn2;U2Þ� 2 R1þd � R1þd ;
such that relations (18) are fulfilled. This is the object of the following proposition.

Proposition 2.1. Let
W ¼ M0;M1
1; . . . ;M1

d ;M
2
11; . . . ;M2

dd ;Q
� �

2 R2þ2d ;
such that
ðiÞ M0 > 0 and ðiiÞ 8i ¼ 1; . . . ; d M0M2
ii P ðM1

i Þ
2
:

Up to a permutation between the subscripts 1 and 2, there exists only one solution
V ¼ ½ðn1;U1Þ; ðn2;U2Þ� 2 R1þd � R1þd , which is not modified by permuting the axis of the referential frame

and which fulfills the consistency relations (18). It is given by
n1 ¼ ð1=2þ xÞM0; n2 ¼ ð1=2� xÞM0;

U 1i ¼ U pi �
n2

n1

� �1=2

rpi; U 2i ¼ U pi þ
n1
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� �1=2

rpi;
ð20Þ
with
x ¼
qp=2

q2
p þ 4

Pd
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3
pi

� 	2
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and where U pi, rpi and qp are defined by
U pi ¼
M1

i

M0
; rpi ¼

M0M2
ii � ðM1

i Þ
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ðM0Þ2

 !1=2

;

qp ¼
1

M0
Q�M0

Xd

i¼1

U 3
pi � 3M0

Xd

i¼1

r2
piU pi

 !
:

Hereinafter, it will be implicitly assumed that the mapping W ! V is defined by (20). As it will be shown in the
proof below, this solution is in general not the only one possible (except when d ¼ 1). This is due to the non-
invariance under rotation of model (19). Nevertheless, this solution is the most ‘‘natural” one since it is the
only one that is invariant under axis permutation.

Proof of Proposition 2.1. First, thanks to conditions (i) and (ii), we note that for all i 2 f1; . . . ; dg, rpi is a real
positive number. Then, using the notation introduced above, we can check easily that system (18) is equivalent
to the following:
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n1 ¼ ð1=2þ xÞM0; n2 ¼ ð1=2� xÞM0;

ð1=2þ xÞdU 1i þ ð1=2� xÞdU 1i ¼ 0 8i ¼ 1; . . . ; d;
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ð1=2þ xÞðdU 1iÞ3 þ ð1=2� xÞðdU 2iÞ3 ¼ qp;

ð21Þ
with dU1 ¼ U1 �Up and dU2 ¼ U2 �Up. A straightforward calculation yields
n1 ¼ ð1=2þ xÞM0; n2 ¼ ð1=2� xÞM0;

dU 11 ¼ �e1

1=2� x
1=2þ x

� �1=2

rp1; dU 21 ¼ e1

1=2þ x
1=2� x

� �1=2

rp1;

..

.

dU 1d ¼ �ed
1=2� x
1=2þ x

� �1=2

rpd ; dU 2d ¼ ed
1=2þ x
1=2� x

� �1=2

rpd ;

ð1=2þ xÞ
Xd

i¼1

ðdU 1iÞ3 þ ð1=2� xÞ
Xd

i¼1

ðdU 2iÞ3 ¼ qp;

ð22Þ
with e1 ¼ �1; . . . ; ed ¼ �1. Inserting the expressions for dU1 and dU2 into the last equation yields the follow-
ing equation for x:
�ð1=2� xÞ2sp þ ð1=2þ xÞ2sp ¼ ð1=4� x2Þ1=2qp:
where sp ¼
Pd

i¼1eir3
pi. An easy calculation yields
2spx ¼ qpð1=4� x2Þ1=2
: ð23Þ
Then (23) implies that
4s2
p þ q2

p

� 	
x2 ¼ 1

4
q2

p; ð24Þ
which finally yields
x ¼ signðspÞ
qp

2 q2
p þ 4s2

p

� 	1=2
: ð25Þ
If all ei are of the same sign, condition (ii) of Proposition 2.1 ensures that x is well defined and lies in ]�1/2,
1/2[ for all qp. On the contrary, in cases where all ei do not have the same sign, it is necessary to assume that
sp 6¼ 0 to ensure that jxj 6¼ 1=2 for all qp, but this hypothesis has no physical meaning and strongly depends on
the choice of the reference frame. This is the reason why only the solutions corresponding to the choice
e1 ¼ e2 ¼ � � � ¼ ed ¼ 1 or e1 ¼ e2 ¼ � � � ¼ ed ¼ �1 have to be considered here as admissible solutions.

Coming back to (22), it is easy to check that these two possible solutions are actually the same up to a
permutation of ðn1;U1Þ with ðn2;U2Þ. This concludes the proof. h
3. Numerical scheme

Because of the conservative form of system (19), the finite-volume method [19] is a natural candidate for its
discretization and the underlying kinetic equation (5) can be used for the derivation of a numerical flux for-
mula that ensures the robustness of the corresponding scheme. For the sake of clarity, let us begin by consid-
ering the one-dimensional case, the multi-dimensional extension being straightforward. We will also show the
equations in terms of the two-node quadrature closure. The equations for the one-node quadrature closure
(i.e., system (9)) follow directly by simply eliminating the second node. We should note that stable numerical
schemes for systems (9) and (19) must account for their fundamentally hyperbolic nature.
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3.1. A first-order, one-dimensional scheme

For one space dimension, system (19) reads
oM0

ot
þ oM1

ox
¼ 0;

oM1

ot
þ oM2

ox
¼ gM0 þ n1

mp

F ðU f ;U 1Þ þ
n2

mp

F ðU f ;U 2Þ;

oM2

ot
þ oM3

ox
¼ 2gM1 þ 2

n1

mp

U 1F ðU f ;U 1Þ þ 2
n2

mp

U 2F ðU f ;U 2Þ;

oM3

ot
þ oM4

ox
¼ 3gM2 þ 3

n1

mp

U 2
1F ðU f ;U 1Þ þ 3

n2

mp

U 2
2F ðU f ;U 2Þ;

ð26Þ
with Mk ¼ n1Uk
1 þ n2U k

2. Let us introduce the following notation:
W ¼

M0

M1

M2

M3

0BBB@
1CCCA; HðW Þ ¼

M1

M2

M3

M4

0BBB@
1CCCA; SðW Þ ¼

0

gM0 þ n1

mp
F 1 þ n2

mp
F 2

2gM1 þ 2 n1

mp
U 1F 1 þ 2 n2

mp
U 2F 2

3gM2 þ 3 n1

mp
U 2

1F 1 þ 3 n2

mp
U 2

2F 2

0BBBBB@

1CCCCCA;
with F 1 ¼ F ðU f ;U 1Þ and F 2 ¼ F ðU f ;U 2Þ. Using classical notation, a fractional two-step, first-order, explicit,
finite-volume scheme for system (26) reads
W �
i ¼ W n

i �
Dt
Dx

G W n
i ;W

n
iþ1

� �
� G W n

i�1;W
n
i

� �
 �
;

W nþ1
i ¼ eW W �

i ;Dt
� �

;

ð27Þ
where G is the numerical flux function (defined below) and eW W �
i ;Dt

� �
is an approximate solution at time

t ¼ Dt of the differential system
dW
dt
¼ SðW Þ with W ð0Þ ¼ W �

i : ð28Þ
The advantage of a fractional-step algorithm is the possibility of using a quasi-analytic solution for the second
step of the scheme to handle the stiffness of the source term. To compute this solution, let us first remark that,
after some algebra, system (28) is equivalent to the following:
dn1

dt
¼ 0;

dU 1

dt
¼ F ðU f ;U 1Þ

mp

þ g;

dn2

dt
¼ 0;

dU 2

dt
¼ F ðU f ;U 2Þ

mp

þ g:
ð29Þ
The drag force may be rewritten as
F ðU f ;U pÞ ¼ mp

U f � Up

spðU f ;UpÞ
; ð30Þ
where sp stands for the particle dynamical response time and is given by
spðU f ;UpÞ ¼
2qpr2

9lf

1þ 1

6
Re2=3

p

� �
: ð31Þ
Using a frozen expression for spðU f ;U pÞ, system (29) can be explicitly solved. Setting si ¼ sp U f ;U �i
� �

, it
yields the following expression for nnþ1

1 ; nnþ1
2 ; Unþ1

1 , and U nþ1
2 :
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nnþ1
1 ¼ n�1;

nnþ1
2 ¼ n�2;

Unþ1
1 ¼ expð�Dt=s1ÞU �1 þ ½1� expð�Dt=s1Þ�ðU f þ gs1Þ;

Unþ1
2 ¼ expð�Dt=s2ÞU �2 þ ½1� expð�Dt=s2Þ�ðU f þ gs2Þ;

ð32Þ
where n�1; n�2; U �1; U �2 can be deduced from W � thanks to the formulae of Proposition 2.1.
It remains to give the expression for the numerical flux G. Let us start from the kinetic origin of system (26).

By construction, one has the following properties:
W ¼
Z

Rd
KðvÞfW ðvÞdv; HðW Þ ¼

Z
Rd

vKðvÞfW ðvÞdv
with KðvÞ ¼ ½1 v v2 v3�T and fW ðvÞ ¼ n1dv�U1
þ n2dv�U2

, where n1, n2, U 1, and U 2 are related to W thanks to
(20). Using the ideas of kinetic schemes [29,7,28,10], it is natural to adopt the following expression for the
numerical flux function:
GðW l;W rÞ ¼
Z

R

1

2
ðvþ jvjÞKðvÞfW l

ðvÞdvþ
Z

R

1

2
ðv� jvjÞKðvÞfW rðvÞdv; ð33Þ
which formally corresponds to a splitting between particles going from left to right (first term), and particles
going from right to left (second term). Inserting the expression for fW in (33) yields
GðW l;W rÞ ¼ HþðW lÞ þ H�ðW rÞ; ð34Þ

with
HþðW lÞ ¼ n1l maxðU 1l; 0Þ

1

U 1l

U 2
1l

U 3
1l

0BBB@
1CCCAþ n2l maxðU 2l; 0Þ

1

U 2l

U 2
2l

U 3
2l

0BBB@
1CCCA; ð35Þ
and
H�ðW rÞ ¼ n1r minðU 1r; 0Þ

1

U 1r

U 2
1r

U 3
1r

0BBB@
1CCCAþ n2r minðU 2r; 0Þ

1

U 2r

U 2
2r

U 3
2r

0BBB@
1CCCA: ð36Þ
Since the definition of scheme Eqs. (27)–(32) involves the mapping W ! V , it is mandatory to verify that, un-
der a suitable condition on the time-step, the constraints (i) and (ii) of Proposition 2.1 are fulfilled at time tnþ1,
assuming that they are satisfied for each cell at time tn. Let us denote by Wad the set of all admissible states, e.g.
Wad ¼ fW 2 R4; W 1 > 0; W 3W 1 > ðW 2Þ2g:

Actually, we have the following proposition.

Proposition 3.1. If for all i 2 Z, W n
i 2Wad and if Dt < inf i2Z

Dx
maxðjUn

1ij;jU
n
2ijÞ

the scheme
W �
i ¼ W n

i �
Dt
Dx

G W n
i ;W

n
iþ1

� �
� G W n

i�1;W
n
i

� �
 �
;

with G defined by (34)–(36), is such that 8i 2 Z, W �
i 2Wad.

Proof of Proposition 3.1. Using the definition (33) of the numerical flux, the finite-volume scheme may be
rewritten as
W �
i ¼

Z
R

KðvÞ ð1� kjvjÞfW n
i
ðvÞ þ kvþfW n

i�1
ðvÞ � kv�fW n

iþ1
ðvÞ

h i
dv;
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with k ¼ Dt=Dx, vþ ¼ maxðv; 0Þ and v� ¼ minðv; 0Þ. For Dt satisfying the CFL condition k < 1

max Un
1ij j; Un

2ij jð Þ, the
velocity distribution
gðvÞ ¼ ð1� kjvjÞfW n
i
ðvÞ þ kvþfW n

i�1
ðvÞ � kv�fW n

iþ1
ðvÞ;
is obviously a non-negative measure on R. Using this property, it is straightforward to prove [28,10] that
W �

i ¼
R

R
KðvÞgðvÞdv lies in Wad. h
3.2. Second-order extension

We will now focus on the second-order extension in the case of one spatial dimension. The use of a Runge–
Kutta type time integration allows us to increase the temporal accuracy to second-order easily. Indeed, a sec-
ond-order Runge–Kutta can be seen as a full time-step advancement using a first-order Euler method followed
by a second full time-step advancement using the solution interpolated at mid time-step to compute the time
derivatives. As a result, one can still use the two-step fractional time integration (27) for each of the two Run-
ge–Kutta steps. Recalling that we are solving for W nþ1

i , the temporal scheme consists of the following first step:
W ��
i ¼ W n

i �
Dt
Dx

G W n
i ;W

n
iþ1

� �
� G W n

i�1;W
n
i

� �
 �
;

W �;nþ1
i ¼ eW W ��

i ;Dt
� �

:

ð37Þ
From the first-order estimate W �;nþ1
i , we can construct an estimate for the mid time-step value W

�;nþ1
2

i by
W
�;nþ1

2
i ¼ 1

2
W n

i þ W �;nþ1
i

� �
: ð38Þ
We then apply the second step of the Runge–Kutta scheme to obtain the second-order accurate solution W nþ1
i :
W �
i ¼ W n

i �
Dt
Dx

G W
�;nþ1

2
i ;W

�;nþ1
2

iþ1

� 	
� G W

�;nþ1
2

i�1 ;W
�;nþ1

2
i

� 	h i
;

W nþ1
i ¼ eW W �

i ;Dt
� �

:

ð39Þ
We will now describe the procedure to obtain second-order spatial accuracy. This procedure is independent of
the time discretization, therefore, we will drop the superscripts for the sake of clarity. The second-order spatial
accuracy is achieved thanks to the MUSCL technique [34,5,19], where a piecewise linear reconstruction of the
face values is used. In the computation of the numerical flux G, the values we use are the cell-face values,

namely we compute the flux across the left face of cell i with G W i�1
2;�
;W i�1

2;þ

� 	
and the flux across the right

face of cell i by G W iþ1
2;�
;W iþ1

2;þ

� 	
. The face values of the solution are constructed by
W i�1
2;�
¼ W i�1 þ

1

2
/ðqi�1ÞðW i � W i�1Þ;

W i�1
2;þ
¼ W i �

1

2
/ðqiÞðW iþ1 � W iÞ;

W iþ1
2;�
¼ W i þ

1

2
/ðqiÞðW iþ1 � W iÞ;

W iþ1
2;þ
¼ W iþ1 �

1

2
/ðqiþ1ÞðW iþ2 � W iþ1Þ;

ð40Þ
where the ratio q between the upwinded and downwinded gradients is defined by
qi ¼
W i � W i�1

W iþ1 � W i
; ð41Þ
and / is a limiter. Indeed, the reconstruction without any limiter (i.e. / ¼ 1) has the disadvantage of not being
monotonous. In order to avoid introducing numerical oscillations by creating new local extrema, we need to
use a limiting function / that will gradually switch between stencils depending on the local smoothness of the
numerical solution. Several options are available for /. We conducted numerical tests with the min-mod, Van
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Leer and Superbee limiters [19]. The Superbee was found to give the best results, therefore it was used for all
the second-order numerical simulations presented in the example section. Its expression reads
/ðqÞ ¼ maxð0;minð2q; 1Þ;minðq; 2ÞÞ: ð42Þ
Note that for the second-order scheme we have no formal proof that the moments will remain in Wad. Nev-
ertheless, this is an important, but difficult point that we will leave to future work.

3.3. Multi-dimensional extension

The multi-dimensional extension of the scheme we just described follows naturally for finite volumes.
Indeed, the quadrature formulae (20) have already been derived for multiple dimensions, and the computation
of the right-hand side of system (19) in the multi-dimensional case is straightforward. The first step of the
finite-volume scheme described by (27) will read
W �
i ¼ W n

i �
Dt
V i

X
f2F

G W n
f ;�;W

n
f ;þ; nf

� 	
Af ; ð43Þ
where i is the control volume considered, and f is one of the faces F of the control volume. V i is the volume of
the cell i, and Af corresponds to the surface area of face f. G W n

f ;�;W
n
f ;þ; nf

� 	
is the numerical flux through the

cell face f defined by (34)–(36) where the face velocities used for the transport must now be taken to be
U1=2;f ;þ=� � nf .

4. Example applications

In this section, we apply the two-node quadrature closure to non-equilibrium fluid-particle flows in order to
illustrate its ability to handle non-trivial problems. Because the drag term offers no particular closure problem,
for clarity we will consider some cases without drag (or equivalently infinite Stokes). However, we shall see in
other examples that the quadrature-based closure works satisfactorily over the entire range of Stokes numbers.
Finally, in order to achieve good numerical resolution, we will use the second-order flux scheme to advance the
moment equations whenever the problem is not one-dimensional. Additionally, it should be noted that in the
quadrature step (20), the velocities can become infinite if n1 or n2 are identically zero. While there are a number
of strategies to alleviate this problem, we simply chose to clip the value of x between [�0.49, 0.49]. This basic
technique did not seem to alter the accuracy of the results in any noticeable manner. However, as seen in the
crossing particle jets example below, clipping does introduce a small amount of numerical dispersion. The
choice of clipping values is the first we tried, and further experimentation might give slightly improved results.
However, as shown in the following examples, this simple strategy already yields good results.

4.1. One-dimensional test case

4.1.1. Impinging particles

The first flow that we consider is one-dimensional with two particle ‘‘packets” moving in opposite direc-
tions. The initial number density np is shown in Fig. 2 (t = 0) where it can be seen that the packet on the left
has number density one-half as large as that on the right. The initial average particle velocity U p is set to 1 for
x < 0:5 and �1 for x P 0:5. The two packets will thus eventually ‘‘collide” as time advances. (Recall, however,
that our particles are collision-less.) In terms of the moments, the initial conditions are
m0 ¼ np; m1 ¼ npUp; m2 ¼ npU 2
p; m3 ¼ npU 3

p;
which yields the following weights and abscissas for two-node quadrature:
w1 ¼ np=2; w2 ¼ np=2; U 1 ¼ U p; U 2 ¼ U p:
We then apply the first-order numerical scheme described in Section 3 to advance the moments for both one-
node and two-node quadrature.
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Fig. 2. Time evolution of number density for one-dimensional impinging particles. - - -, one-node quadrature; —, two-node quadrature.
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Fig. 2 illustrates the resulting time evolution of the particle number density. Before collision (i.e., before np

at x ¼ 0:5 is greater than machine precision) both one-node and two-node quadrature yield identical results
for np. However, as soon as np becomes non-zero at x ¼ 0:5 the two closures predict different values for all
of the moments. With the one-node closure np accumulates at x ¼ 0:5 and the average velocity Up is indepen-
dent of t. In contrast, with the two-node closure the two packets pass through each other and the average
velocity (not shown) evolves in a non-trivial manner to finally end with U p equal �1 for x < 0:5 and 1 for
x P 0:5 (i.e., the opposite sign compared to the initial conditions). Thus, the two-node closure yields a solution
that exactly corresponds to the Lagrangian simulation of (1) in the limit of infinite Stokes.
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The dramatic differences between the two closures is due to the fact that the two-node quadrature can
describe particle-crossing trajectories, while the one-node closure cannot. Without this ability, a moment clo-
sure cannot predict any of the velocity moments (including the zero-order moment!) correctly for particles
with Stokes numbers only slightly greater than zero and larger. We should note that second-order closures
such as (12) also lack the ability to describe particle-crossing trajectories. This fact has important ramifications
on the validity of using Eulerian multi-fluid models to investigate particle segregation in dilute fluid-particle
flows (e.g. [16]) as a surrogate for Lagrangian methods. From this simple example, we can see that in general
the segregation levels predicted by moment closures that cannot explicitly handle particle-crossing trajectories
will be much larger than what would be found using a Lagrangian method.

4.2. Two-dimensional test cases

4.2.1. Crossing particle jets

In this example, we demonstrate the ability of two-node quadrature to capture particle-crossing trajectories
in two-dimensional flows with infinite Stokes number particles. The flow domain is the unit square and particle
Fig. 3. Time evolution of particle number density for crossing jets.
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jets are introduced centered at the bottom and right-hand sides of the domain with velocities of equal magni-
tude (see Fig. 3). The evolution of the particle number density is shown in Fig. 3. At early times (t = 0.25) the
jets advance towards the center point. At t ¼ 0:50, the jets begin to overlap and the local number density dou-
bles. For subsequent times (t = 0.75), the jets continue along their original trajectories and finally exit
(t = 1.00) the flow domain at the top and left-hand sides, respectively. We should note that if the second-order
moment closure were used to compute this flow, the jets would ‘‘collide” at the center point and move off diag-
onally in one stream towards the upper left-hand corner of the domain (i.e., with a velocity equal to the average
velocity of the two incoming jets). Just as in the previous example, the key to success is the fact that two-node
quadrature can describe the bimodal velocity distribution that occurs in the jet-overlap region near the center
point. Indeed, in the overlap region the two velocity abscissas have values U1 ¼ ½0 1�T and U2 ¼ ½�1 0�T, which
correspond to the average velocity boundary condition on the lower and right-side walls, respectively.

4.2.2. Particle-wall rebound

In the next example, we consider a particle jet rebounding off a reflective wall. In this flow, the particle jet
enters through the left-hand side of the domain with average velocity Up ¼ ½1 � 1�T (see Fig. 4). The jet
Fig. 4. Time evolution of particle number density for particle-wall rebound.
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proceeds towards the bottom wall where it is reflected back into the box before exiting from the left-hand side.
The boundary condition along the bottom wall is straightforward to implement in terms of the velocity abscis-
sas. We simply change the y component of the node velocities as follows: Un2 ! �eUn2 where e ¼ 1 is the coef-
ficient of restitution, and adjust the weights to conserve mass. Thus, one can easily simulation particle
rebounds off of partially reflective walls by choosing 0 < e < 1. Note that in this example, the particle velocity
is bivariate near the impingement point at the wall due to the incoming velocity of ½1 � 1�T and the outgoing
velocity of ½1 e�T. Thus, the average velocity just above the wall is ½1 ðe� 1Þ=2�T. Because most moment clo-
sures use the average velocity for convective transport, they are not able to reflect particles from the wall. Once
again, the two-node quadrature closure overcomes this difficulty in an intuitive and straightforward manner.

These three examples without fluid coupling clearly demonstrate the power of quadrature-based moment
closures to represent the dynamics of non-equilibrium particle flows. In the next set of examples, we add fluid
coupling and compare the Eulerian moment closure directly to Lagrangian simulations for the same flows. In
each example, we will assume that the fluid velocity field is known and unaffected by the particles. We will then
initialize a particle field with a given Stokes number in a region of the flow, and allow it to evolve through the
combined effects of transport and drag. The Eulerian description will be based on the two-node closure. The
Lagrangian description will use a large ensemble of particles initialized in such a way to be exactly consistent
with the moments used in the Eulerian model. Although it would in principle be possible to compare predic-
tions for any of the moments used in the Eulerian description, we will concentrate on comparisons at the level
of the particle number density, which can be estimated from Lagrangian simulations with an acceptable level
of statistical error.

4.2.3. Taylor–Green flow

In the first set of examples with fluid coupling, we will assume that the fluid is described by Taylor–Green
(TG) flow in a periodic domain [4,26] (see Fig. 5). The particle field is initialized such that all particles are uni-
formly distributed in a small circle just above the center of a TG vortex, and the initial particle velocity is the
same as the fluid velocity at the same location. Locating the particles off center breaks the symmetry of the
particle flow, and thus makes the effect of the particle Stokes number easier to observe. For zero Stokes,
the particles velocity is exactly equal to the fluid velocity, and the circle of particles simply rotates about
the center point without changing shape. For finite but small Stokes, the particle behavior depends on a crit-
ical Stokes number Stc ¼ 1=ð8pÞ 	 0:04 [23,24]. Below Stc, the particles will remain inside of a TG cell for all
times without particle-crossing trajectories, eventually approaching the four corners of the TG cell where the
fluid velocity is null. Above Stc, at least some of the particles will escape their original TG cell and enter
neighboring cells. In general this will lead to particle-crossing trajectories, with the number increasing with
Fig. 5. Initial conditions used for Taylor–Green flow examples. Solid circle represents the particle locations and the curves represent fluid
streamlines.



Fig. 6. Time evolution of particle number density in Taylor–Green flow for St ¼ 0:1. Contours: 10 levels uniformly spaced between 0
and 5.
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increasing Stokes number. For Stokes number below Stc, the Eulerian model based on the one-node quadra-
ture closure is in excellent agreement with the Lagrangian simulations [4]. We will thus consider only examples
where the one-node closure breaks down above Stc.

In the first example, the Stokes number is set to 0.1. Contour plots found from the two-node closures over-
laid with the Lagrangian particle positions are shown in Fig. 6. For this Stokes number, particle-crossing tra-
jectories occur only near the corners of the TG cells. However, it can clearly be observed that by t ¼ 1:5
particles have begun to leave their original TG cell and are accumulating along the cell walls. Due to the peri-
odic nature of the flow domain, particles that leave from the left/bottom (see t ¼ 2:0) are returned at the right/
top. Although difficult to assess in a quantitative manner due to the relatively high concentration of the par-
ticles near the walls, it is evident that the agreement between the Lagrangian and Eulerian particle distribu-
tions is at a minimum qualitatively good. Finally, we can report that the one-node closure begins to fail
for this Stokes number at the time where the particles first begin to leave their original TG cell. Just as in
the example in Fig. 2, this breakdown is caused by the inability of the one-node closure to describe the par-
ticle-crossing trajectories that occur when particle cross cell boundaries.
Fig. 7. Time evolution of particle number density in Taylor–Green flow for St ¼ 1. Contours: 10 levels uniformly spaced between 0
and 1.2.
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In the second example, shown in Fig. 7, the Stokes number is set to 1.0. For this Stokes number, the par-
ticles do not respond quickly to the fluid drag and particle-crossing trajectories occur quite often. By t ¼ 1:5
the particles start to cross the lower and right boundaries of their original TG cell. By t ¼ 2:0 the majority of
the particles are in the lower TG cells where the local fluid velocity is directed upward. In other words, the fluid
drag is working to decelerate the particles. This results in a local accumulation of particles at t ¼ 2:5 and even-
tually ðt ¼ 3:0Þ some of the particles move in the opposite direction. Thus, in this region of the flow the particle
velocity distribution is bimodal at each point (i.e., there are particles moving upward and downward at the
same point). The two-node closure successfully handles these flow structures without creating ‘‘singularities”

in the particle number density. Particle-crossing trajectories can be observed at several other locations in the
flow (lower left corner at t ¼ 2:5, upper left corner at t ¼ 3:0). One can also observe that the agreement
between the Lagrangian and Eulerian particle distributions is again excellent.

Finally, a comparison between the one-node and two-node closure predictions at t ¼ 3 is shown in Fig. 8.
As is characteristic of all Eulerian models that cannot explicitly represent more than one local particle velocity,
the one-node closure exhibits local ‘‘delta-shocks” [3,24,4] where particles accumulate whenever particles are
traveling in two directions at the same point. Thus, for example, in the one-node closure we do not observe in
the lower-right corner particle ‘‘clouds” moving upward and downward, as is observed in the Lagrangian sim-
ulations and with the two-node closure. Instead, all of the particles concentration on thin ‘‘bands” that are
convected with the local average particle velocity. Note that the thickness of these bands is entirely dependent
on the grid resolution used to solve the problem (i.e., a sort of ‘‘numerical” segregation that is unphysical).
Thus, the numerical solution of the one-node model will never be grid independent. This behavior is com-
pletely analogous to that seen in one spatial dimension (Fig. 2). The overall conclusion is that Eulerian models
that cannot represent explicitly multiple local velocities lose accuracy very quickly for particles with finite
Stokes number.

In the third example, shown in Fig. 9, the Stokes number is set to 10. For this Stokes number, the particles
respond very slowly to the fluid drag and particle-crossing trajectories are ubiquitous in the periodic flow
domain. Up to t ¼ 7 we can observe that the agreement between the Lagrangian and Eulerian simulations
is excellent. However, by t ¼ 8 and especially at t ¼ 10, significant differences are plainly visible. The reason
for the eventual degradation of the prediction from the two-node closure is straightforward. At this Stokes
number multiple particle-crossing trajectories (i.e., more than two) will occur as the particles exit and renter
the periodic domain at various angles. By definition, the two-node closure can only describe two particle veloc-
ities at any point. Thus, when three particle trajectories cross, the two-node closure replaces the three velocities
with only two, while preserving the set of 2ð1þ dÞ lower-order moments used to define the two-node closure.
Fig. 8. Comparison of particle number densities in Taylor–Green flow for St ¼ 1. Contours: 10 levels uniformly spaced between 0 and 1.2.



Fig. 9. Time evolution of particle number density in Taylor–Green flow for St ¼ 10. Contours: 10 levels uniformly spaced between 0
and 1.2.
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In a two-dimensional flow, six moments are required to define uniquely two velocities, but nine would be
required to define three velocities. While a quadrature-based moment closure with more than two nodes would
allow us to handle multiple particle-crossing trajectories, it is obvious that large Stokes number particles in
periodic domains will eventually exhaust all of the available nodes. Nevertheless, it is remarkable that the
quadrature-based closure agrees with the Lagrangian simulations for as long as it does for this difficult exam-
ple. In comparison, other Eulerian models break down much earlier due to their inability to capture particle-
crossing trajectories.

4.3. Three-dimensional test case

4.3.1. Frozen homogeneous isotropic turbulence

For this test case, we use a ‘‘frozen” three-dimensional homogeneous isotropic turbulence field [25,31] with
a Taylor-scale Reynolds number of Rk ¼ 56 to represent the fluid. A 1283 computational grid is employed to
solve the quadrature-based closures. The same fluid field is used with 107 particles to estimate the particle
number density using Lagrangian particle tracking. A two-dimensional slice from the fluid vorticity field is
shown in Fig. 10. The Lagrangian particles are distributed uniformly in the 3D domain at time t ¼ 0, and their
initial velocities are set to that of the fluid. The corresponding moments of the particle number density func-
tion (which are uniform throughout the domain) are used to initialize the Eulerian models. The Stokes number
based on the eddy-turnover time ðteÞ and the particle response time is St ¼ 0:3, while that based on the Kol-
mogorov time scale is Stg ¼ 6:93.

Example results are shown in Fig. 11. In the first column of this figure, we plot the actual x–y particle loca-
tions for Lagrangian particles in the same 128� 128� 1 slice through the 3D computational domain as was
used in Fig. 10. In the second column of Fig. 11, we plot the Lagrangian number density estimated by counting
the number of particles in each grid cell. Note that because the total number of particles is greater than the
total number of grid cells by only a factor of 4.77, the estimated Lagrangian particle number density is rela-
tively noisy. In the third column of Fig. 11, we plot the number density found using one-node quadrature (i.e.,
the two-fluid model), while the two-node closure results are shown in the fourth column.

Results for four different times (scaled by te) are shown in Fig. 11. At t ¼ 0:5, we can observe from the
Lagrangian results that the particles are beginning to exhibit zones of preferential concentration with finite
widths. In contrast, the one-node quadrature results exhibit local delta-shocks where all of the particle
number density appears to be concentrated. Note that these delta-shocks do not, in general, appear in
Fig. 10. Frozen fluid vorticity field for homogeneous turbulent flow example with Rk ¼ 56. Same x–y plane is used in Fig. 11.



Fig. 11. Evolution of the Lagrangian particle positions and number density in frozen homogeneous turbulent flow for St ¼ 0:3. First
column: Particle locations. Second column: Lagrangian number density. Third column: One-node quadrature. Fourth column: Two-node
quadrature. Color scale for columns 2–4: white is zero and black is equal to five times the volume-averaged number density.
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the same locations as the preferential concentration zones. Remarkably, two-node quadrature exhibits
preferential concentration zones of finite width and in the same locations as the Lagrangian simulations.
Unfortunately, even with 107 Lagrangian particles, the 3D moment fields computed from Lagrangian par-
ticle tracking are too noisy to allow for quantitative comparisons with the Eulerian models. This obser-
vation is consistent with [4] where 16� 106 particles were required in quasi-2D simulations to obtain
reasonably converged statistics.

Because the fluid velocity field is stationary, one would expect the Eulerian solver to approach a steady-
state solution. Likewise, the Lagrangian solver will approach a dynamic steady state where the particles con-
tinue to move, but the statistics approach steady-state values (with time-dependent fluctuations due to the
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Fig. 12. Normalized volume-averaged variance of the number density computed from the Eulerian models in frozen homogeneous
turbulent flow for St ¼ 0:3. Dashed: One-node quadrature. Solid: Two-node quadrature.
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finite number of Lagrangian particles). As seen in Fig. 11, the results at t ¼ 2 are close to the steady-state
values for the Lagrangian simulation and for two-node quadrature. As observed at earlier times, the zones
of preferential concentration are again coincident for the Lagrangian simulation and two-node quadrature.
The same is true at t ¼ 2:5, where the two-node closure results appear to have reached a steady state. In con-
trast, the one-node closure never reaches steady state. Instead, the number density field is made up of time-
dependent (and grid-dependent) delta-shocks whose location and evolution is highly sensitive to the numerics.
The difference between the two Eulerian models is illustrated in Fig. 12 where we compare the normalized vol-
ume-averaged variance of the number density found from both closures. It can be seen that the one-node clo-
sure quickly generates a very large variance because of the formation of delta-shocks. In contrast, the variance
for two-node closure reaches a steady-state value near two for t > 3. It is remarkable that the number density
predicted by the two-node closure at t ¼ 2:5 in Fig. 11 has a structure that closely resembles that of the
Lagrangian simulation, while for the one-node closure it is completely different (e.g. zones of high number
density are predicted where the Lagrangian simulation has no particles).

5. Conclusions

A two-node quadrature-based moment closure for the Williams spray equation has been derived and ver-
ified for one- and two-dimensional, non-equilibrium, dilute, fluid-particle flows. In contrast to the ‘‘standard”
Eulerian multi-fluid model, two-node quadrature can successfully handle flows with particle-crossing trajecto-
ries and thus is able to compute accurately the lower-order velocity moments previously obtainable only by
employing a Lagrangian method. While further work is needed to extend the quadrature method to higher
order (e.g. three-node quadrature), the ability to compute accurate particle velocity statistics (including, for
example, particle energy spectra) in an Eulerian framework should make the quadrature-based models very
attractive for many applications involving dispersed-phase flows. Moreover, because quadrature methods
are well suited from approximating collision/coalescence terms, it should be relatively straightforward to
include such effects in the Eulerian model developed in this work. Finally, because kinetic equations are
employed in many fields of physics, the quadrature-based moment closure should find use in many other appli-
cations (such as the simulation of rarefied gas flows far from equilibrium [2], and microbubble-laden flows
[12]) that are currently treated using Lagrangian methods.
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